Bitkilərin rəngarəngliyi sənət nümunəsidir

bitkilerin-rengarengliyi-senet-numunesidir-0bI0·         Ətrafınızdakı çiçəklərin nə üçün bu qədər müxtəlif rəngləri olduğunu heç düşünmüsünüzmü?

·         Bitkilərin yarpaqları nə üçün yaşıldır?

·         Metrlərlə hündürlüyü olan ağacların ən ucdakı budaqları belə yaşıl rəngini necə qoruyur?

Meyvələr, tərəvəzlər, çiçəklər və ağacların hər birinin müxtəlif rəngi, qoxusu və dadı var. Şübhəsiz ki, bu xüsusiyyət Allah`ın yaratma sənətinin dəlillərindəndir. Ətrafınızda hər an gördüyünüz, bəzən də ancaq kitablardan tanıdığınız bitkilərin hər birinin özünəməxsus rəng və naxışları var. “Bitkilərin rəngarəngliyi sənət nümunəsidir” yazısını okumaya devam et

Reklamlar

Atmosfer və nəfəs

65b932e2_0101-0510-2301-0652_satellite_image_of_hurricane_katrina_oHəyatımızın hər dəqiqəsində nəfəs alarıq. Həmişə ciyərlərimizə hava çəkər və tezliklə həmin havanı geri verərik. Bunu o qədər çox edərik ki, “normal” bir əməliyyat olduğunu düşünərik. Halbuki əslində nəfəs almaq çox mürəkkəb əməliyyatdır. “Atmosfer və nəfəs” yazısını okumaya devam et

Allahın yoxdan yaratması elmi həqiqətdir

Keçmişdəki bəzi yunan filosoflarının təsirində qalan bir sıra mütəfəkkirlər materializmi son bir neçə əsrdə yenidən gündəmə gətirmişdilər. Materialistlərin ən təməl iddiası maddənin əzəli olduğu iddiası idi. Belə ki, Lavuazye adlı materialist bu düşüncəni “heç nə itmir və heç nə yoxdan yaranmır” kimi ifadə etmişdi. Bu ifadə kifayət qədər çox materialist üçün uzun müddət şüara çevrilmişdi.

Əlbəttə ki, hər hansı dəlilə söykənməyən bu iddianın əqli və vicdani cəhətdən heç bir əsası olmadığı göz qabağındadır. “Allahın yoxdan yaratması elmi həqiqətdir” yazısını okumaya devam et

Köpəkbalığı dərisindən nümunə götürülərək hazırlanan çimərlik paltarları və suyun səth müqaviməti

1/100 saniyənin qızıl medalı müəyyən etdiyi olimpiada yarışlarında yarışçılar üçün suyun bədənlərinə qarşı sürtünmə müqaviməti böyük əhəmiyyət kəsb edir. Bu səbəbdən bir çox üzgüçü sürtünmə müqavimətini ən aşağı səviyyəyə salan yeni çimərlik geyimlərinə üstünlük verir. Bu çimərlik geyimləri üzgüçünün bədəninə möhkəm yapışaraq bədəninin böyük hissəsini əhatə edir. Çimərlik geyiminin materialı şaquli qatran zolaqları üzərində köpəkbalığı dərisinin xüsusiyyətlərini daşıyan toxumadan ibarətdir.

Köpəkbalıqları üzərində skanerli elektron mikroskopu ilə aparılan tədqiqatlarda balığın dərisinin zolaqlardan təşkil olunduğu müşahidə edilmişdir. Zolaqlar şaquli su girdabları və ya su spiralları əmələ gətirərək suyu balığın bədəninə daha çox yapışdırır və suyun üzməyə qarşı müqavimətini azaldır. Zolaqların bu təsiri Ribblet təsiri adlanır və bu mövzu ilə bağlı NASA-nın Lenqli Tədqiqat Mərkəzində (Langley Research Center) Ribblet dəri tədqiqatları aparılır. Son on ildir ki, bu təsir çimərlik geyimlərinə tətbiq olunur.

Yeni liflər və yeni toxuma texnikaları ilə hazırlanan çimərlik geyimləri üzgüçünün bədənini örtərək suya ən az müqavimət göstərəcək şəkildə istehsal olunur. Belə ki, aparılan tədqiqatlar bu çimərlik geyimlərinin digərləri ilə müqayisədə sürtünmə müqavimətini 8% azaltdığını göstərmişdir.1

Kopek baligi

Yuxarıda böyük şəkildə köpəkbalığının dərisinin skanerli elektron mikroskopundakı görüntüsü görünür.2 Sidney Olimpiadasında avstraliyalı İan Torp (Ian Thorpe) kimi qızıl medal almış bütün üzgüçülər köpəkbalığı dərisi xüsusiyyəti daşıyan çimərlik geyimləri geyinmişdilər. Bu, yeni iş sahəsinin açılmasına səbəb olacaq qədər mühüm irəliləyiş idi. Çimərlik geyimi istehsalında dünyanın ən tanınmış şirkətləri arasında olan “Speedo”, “Nike” və “Adidas” kimi firmalar biomexanika və hidrodinamika sahəsində bir çox mütəxəssisi işə qəbul ediblər.3

1 Bilim ve Teknik, TUBİTAK Yayınları, No.395, oktyabr 2000, səh.77

2 Bilim ve Teknik, TÜBİTAK Yayınları, No.395, oktyabr 2000, səh.77

3 news. bbc. co. uk/. . . /athletics-track/ newsid_935000/935260. stm

 

Müxtəlif rəngli bitkilər sənətkarlıq nümunəsidir

  • Ətrafınızdakı çiçəklərin nə üçün bu qədər müxtəlif rəngləri olduğunu heç düşünmüsünüzmü?
  • Bitkilərin yarpaqları nə üçün yaşıldır?
  • Metrlərlə hündürlüyü olan ağacların ən ucdakı budaqları belə yaşıl rəngini necə qoruyur?

Meyvələr, tərəvəzlər, çiçəklər və ağacların hər birinin müxtəlif rəngi, qoxusu və dadı var. Şübhəsiz ki, bu xüsusiyyət Allah`ın yaratma sənətinin dəlillərindəndir. Ətrafınızda hər an gördüyünüz, bəzən də ancaq kitablardan tanıdığınız bitkilərin hər birinin özünəməxsus rəng və naxışları var. Hamısının çoxalma forması fərqlidir, tərkiblərindəki nektarın miqdarı, qoxuları da fərqlənir. Gülləri düşünək. Qırmızı, ağ, sarı, narıncı, çəhrayı, kənarları ağ, əlvan rəngli, hətta bir-birinə keçid edən rəngləri olan növbənöv çiçəklər var. Sözsüz ki, bunları görən insanın heyran olmaması, çiçəkləri yaradan uca Allah`ın sonsuz qüdrətini qavramaması korluqdur.

Bitkilərin nə üçün yaşıl rəngdə olduğunu heç düşünmüsünüzmü?

Məlum olduğu kimi, bitkilər aləmində hakim rəng yaşıl və yaşılın çalarlarıdır. Yaşıl rəngi əmələ gətirən əsas maddə isə xlorofildir. Çox mühüm maddə olan xlorofil bitki hüceyrəsinin sitoplazmasında yayılmış halda yerləşən xloroplastlardakı piqmentdir. Günəşdən qəbul etdikləri işığı asanlıqla udan bu piqmentlər ancaq yaşıl rəngi əks etdirirlər. Bu xüsusiyyət yarpaqlara yaşıl rəng verməklə yanaşı, fotosintez kimi həyati əhəmiyyətli prosesin həyata keçməsini də təmin edir.

Bitkilər fotosintez prosesində fərqli rənglərin birləşməsindən təşkil olunmuş günəş işığından istifadə edirlər. Günəş işığındakı rənglərin ən əsas xüsusiyyətlərindən biri enerji yüklərinin fərqli olmasıdır. Bu rənglərin ayrılması ilə ortaya çıxan və spektr adlanan rəng ardıcıllığının bir ucunda qırmızı və sarı rəngin çalarları, digər ucunda isə mavi və bənövşəyi rəngin çalarları yerləşir. Ən çox enerji daşıyanlar spektrin mavi ucundakı rənglərdir.

Rənglər arasındakı bu enerji fərqi bitkilər üçün böyük əhəmiyyət daşıyır. Çünki fotosintez etmək üçün çox enerjiyə ehtiyacları var. Odur ki, bitkilər fotosintez zamanı günəş şüalarından ən çox enerji daşıyanları, yəni spektrin ultrabənövşəyi ucundakı rənglərlə (mavi və bənövşəyi) yanaşı, spektrin infraqırmızı ucundakı rəngləri (qırmızı, narıncı və sarı) udurlar. Yarpaqlar bütün bu prosesləri xloroplastlardakı xlorofil piqmenti sayəsində bacarırlar.

Bitkinin fotosintez etməsi üçün xlorofilin udduğu işıq zərrəciklərinin enerji səviyyəsi lazımi qədər olmalıdır. Qısa şəkildə fotosintez prosesini şərh edək. Bitki işıq zərrəciklərindən aldığı enerji ilə su molekullarını parçalayır və oksigen və hidrogen molekullarını əldə edir. Əldə edilən hidrogen bitkinin həyatını davam etdirməsi üçün karbon qazındakı karbon atomları ilə reaksiyaya girərək bitkinin şirəsinə çevrilir. Yəni bitki öz qida maddəsini əmələ gətirir. İstifadə edilməyən oksigen isə havaya verilir. Atmosferdən qəbul etdiyimiz oksigenin böyük faizi bu yolla əmələ gəlir.

Göründüyü kimi, bitkilərin yaşıl olması estetik görüntü ilə yanaşı, həm bitkilərin, həm də digər canlıların həyatı üçün böyük əhəmiyyət daşıyır. Allah bitkilərin və bütün digər canlıların qidalanmasında xlorofil maddəsini səbəb edir.

Çiçəklərin rəngləri və naxışları bənzərsizdir. Yer üzündəki minlərlə çiçək növünün hər birinin özünəməxsus xüsusiyyətləri var. Dövrümüzdə insanlar təbiətdəki bənzərlərini təqlid etməklə ətirlər, naxışlar və rənglər istehsal edirlər. Məsələn, bənövşələrin məxməri yumşaqlığı, yarpaqlarının bənövşəyi rəngi və yarpaq toxumalarının hamarlığı möhtəşəmdir. Məxmər parçalar bənövşələrin təqlid edilməsi ilə istehsal olunur, ancaq yenə də həmin keyfiyyət əldə edilə bilmir. Bu şəkildə düşünərək yer üzündəki hansı bitkini təhlil etsək, mükəmməl yaradılışla qarşılaşarıq. Yaratmada heç bir ortağı olmayan Allah dadı, qoxusu, rəngi,  naxışı fərqli olan bitkiləri insan üçün yaratmışdır. Biz isə Allah`ın yaratdığı dəlillər üzərində düşünüb şükür etməliyik.

Bitkilərin fərqli rəngləri necə meydana gəlir?

Hər maddənin əks etdirdiyi rəng həmin maddənin piqment molekullarından asılıdır. Yaşıl bitkilərdəki piqment molekulu xlorofildir. Bununla yanaşı, bitkilərdə başqa rəngləri əmələ gətirən piqmentlər də var və bu piqment növləri bitkilərdəki qeyri-adi rəng müxtəlifliyinin əmələ gəlməsinə səbəb olur.

Xlorofildən əlavə, bitkilərdə karotinoid adlanan piqmentlər var. Bu piqmentlərdən bəzisi sarıdır: qarğıdalıya, limona, günəbaxana rəng verir. Digər karotinoidlər isə daha çox qırmızıya çalırlar. Bunlar şəkər çuğundurunda, pomidorda, güllərdə, yerkökündə olur. Karotinoidlər həm də yaşıl yarpaqların içində var. Bəs niyə yarpaqlar qırmızı, sarı və ya narıncı deyil, yaşıl rəngdə görünürlər? Bunun səbəbi xlorofilin yaşılının digər rənglərin görünməsinin qarşısını alacaq qədər güclü olmasıdır.

Bununla yanaşı, payızda dəyişikliklər baş verir. Günəş işığının azalması ilə bitkilər xlorofil hasil etməyi dayandırırlar və buna görə də yaşıl rəng verən piqmentlərin gücü azalır və yarpaqlardakı yaşıl rəng solmağa başlayır.

Karotinoidlər yarpaqları qəhvəyi, sarı və qırmızı rəngə boyayırlar. Eyni zamanda, payızda bəzi yarpaqların xarici təbəqələrində antosian adlanan piqmentlər hasil edilir. Parlaq qırmızı və mavi rəngdə olan bu piqmentlər yarpaqlarda qırmızı və çəhrayı rəng əmələ gətirən maddələrdir. Əgər bitkidə birdən çox piqment olarsa, onda bitkidə piqmentlərin əks etdirdiyi rənglərin qarışığı görünür.

Dünyanın hər yerində eyni növdəki çiçəklərin eyni naxışları və rəngləri var və əsla dəyişmirlər

Bitkiyə rəng verən piqmentlərin hamısının məlumatı bitkinin DNT-sində şifrlənib. Ona görə də bir bitki növü dünyanın hər yerində eyni xüsusiyyətləri daşıyır. Məsələn, dünyanın hər yerindəki portağalların rəngi eynidir, formaları və qabıqlarının toxuması da fərqlənmir. Portağalın qabığının içində yerləşən narıncı rəngli, ətirli, şirin su dolu torbacıqları əmələ gətirən şəffaf pərdənin rəngi dünyanın hər yerində eynidir, dəyişmir. Bananlar dünyanın hər yerində eynidir, pomidorlar qırmızı, güllər, bənövşələr, qərənfillər də eynidir. Dünyanın hər yerində təbii olaraq yetişən çiyələyin fərqli rəngdə olduğunu görə bilməzsiniz. Dünyanın hər yerindəki çiyələklərin DNT-sində çiyələyə məxsus xüsusiyyətlər qeyd olunub. Çiyələyin rəngi, qoxusu, dadı da eynidir. Bu, bənzərsiz nizamdır. Belə bir nizamın öz-özünə, təsadüfən əmələ gəldiyini iddia etmək olmaz.

Gəlin, eyni torpaqdan müxtəlif bitkilərin çıxmasını ətrafımızdakı tərəvəz və meyvələr üzərində düşünək. Məsələn, qarpız, yemiş, kivi, banan, gilas, badımcan, pomidor, üzüm, şaftalı, lobya… Tünd sarı rəngli qabığını açdıqda içindən gözəl ətirli, açıq-sarı rəngli banan çıxır. Almanın qırmızı, yaşıl və sarı rəngli qabığı hamar və cilalıdır. Almanın ətirli şirin şirəsinin dadı və qoxusu insanlar tərəfindən əsla təqlid edilə bilmir. İnsan yeni bir rəng yarada bilmir. İnsanların əmələ gətirdiyi bütün rənglər təbiətdə olan rənglər əsasında əldə edilir. Ancaq Allah yoxdan yaradandır və yer üzündəki canlıları tamamlayan rənglərin hamısını O yaradıb. Allah`ın yaratma sənətinin tayı-bərabəri yoxdur.

Yer üzündəki bütün rəngləri yaradan Allah`dır. Göy üzü, dağlar, tarlalar, kəpənəklər, qırmızı almalar, portağallar, tutuquşular, qırqovullar, üzümlər, ağaclar, qısası, ətrafınızda gördüyünüz hər şey Allah istədiyi üçün bu rənglərə malikdirlər.

Mənbə: http://www.biologiya.az

http://biologiya.az/166-bitkilerin-rengarengliyi-senet-numunesidir.html

Oksigenin həssas həll olma tarazlığı

 

Bədənimizin oksigendən istifadə edə bilməsi, bu qazın suda həll olma xüsusiyyətindən qaynaqlanır. Nəfəs aldığımız vaxt, ağciyərlərimizə daxil olan oksigen, dərhal həll olaraq qana qarışar. Qandakı hemoqlobin adlı zülal həll olunan bu oksigen molekullarını tutaraq hüceyrələrə daşıyar. Hüceyrələrdə isə, bir qədər əvvəl ifadə etdiyimiz xüsusi ferment sistemləri sayəsində, bu oksigendən istifadə edilərək ATF adlandırılan karbon birləşmələri yandırılar və enerji əldə edilər.

Bütün mürəkkəb canlılar bu sistemlə enerji əldə edərlər. Lakin, əlbəttə ki, bu sistemin işləyə bilməsi, əvvəla oksigenin həlla xüsusiyyətindən asılıdır. Əgər oksigen kifayət qədər həll olmasa, o, qana çox az miqdarda qarışar və bu da hüceyrələrin enerji ehtiyacının ödənilməsinə kifayət etməz. Oksigenin çox həll olunması isə, qandakı oksigen miqdarını həddən artıq yüksəldər və “oksidasiya zəhərlənməsi” yaradar.

Mövzunun diqqət çəkən tərəfi isə, müxtəlif qazların suda həll olma əmsallarının, bir-birlərindən bir milyon qat fərqli ola bilməsidir. Yəni ən çox həll olunan qazla ən az həll olunan qaz arasında, bir milyon qatlıq həll olma fərqi var. Demək olar ki, heç bir qazın həll olma əmsalı eyni deyil. Məsələn, karbon, oksigenə görə suda iyirmi qat daha çox həll olar. Bu qədər müxtəlif həll olma əmsalları arasında oksigenin həll olma əmsalı isə, tam bizim üçün uyğun olan əmsaldır.

Görəsən oksigenin həll olma əmsalı bir qədər daha az və ya çox olsa nə baş verərdi?

Əvvəlcə birinci ehtimala baxaq. Əgər oksigen suda (və dolayısilə qanda) bir qədər daha az həll olsa, qana daha az oksigen qarışar və hüceyrələr kifayət qədər oksigen ala bilməz. Belə olan halda, insan kimi yüksək maddələr mübadiləsi sürətinə sahib canlıların yaşaması çox çətinləşər. Belə olduqda nə qədər çox nəfəs alsaq da, havadakı oksigen hüceyrələrə kifayət qədər çatmayacağı üçün, yavaş-yavaş boğulma təhlükəsi ilə üzləşərik.

Əgər oksigenin həll olma əmsalı daha çox olsa, bu dəfə isə, bir qədər əvvəl ifadə etdiyimiz “oksidasiya zəhərlənməsi” baş verər. Oksigen əslində çox təhlükəli qazdır və normadan artıq qəbul edildikdə canlılar üçün öldürücü təsirə malikdir. Qandakı oksigen miqdarı artdıqda, bu oksigen su ilə reaksiyaya girərək olduqca reaktiv və zərərli tullantılar ortaya çıxardar. Bədəndə, oksigenin bu təsirini aradan qaldıran olduqca mürəkkəb fermentativ sistemlər var. Lakin oksigen miqdarı bir qədər daha artsa, bu ferment sistemləri işə yaramayacaq və aldığımız hər nəfəs bədəni bir qədər daha zəhərləyərək bizi qısa müddətdə ölümə aparacaq. Kimyaçı İrvin Fridoviç (Irwin Fridovich), bu mövzuda belə söyləyir:

“Tənəffüs edən bütün orqanizmlər qəribə bir tələyə düşüblər. Həyatlarını dəstəkləyən oksigen, eyni zamanda onlar üçün zəhərləyici (toksik) xüsusiyyətdədir və bu təhlükədən yalnız çox həssas olan bəzi xüsusi müdafiə mexanizmləri sayəsində qorunurlar”.(1)

Məhz bizi bu tələdən, yəni oksigenlə zəhərlənmə və ya oksigensiz qalaraq boğulma təhlükələrindən qoruyan şey, oksigenin həll olma əmsalının və bədəndəki mürəkkəb ferment sistemlərinin tam lazım olduğu şəkildə müəyyənləşdirilmiş və yaradılmış olmasıdır. Daha açıq desək, Allah, tənəffüs etdiyimiz havanı da, bu havadan istifadə etməyimizi təmin edən sistemlərimizi də mükəmməl şəkildə yaratmışdır.

1) Irwin Fridovich, “Oxygen Radicals, Hydrogen Peroxide, and Oxygen Toxicity”, Free Radicals in Biology, (ed. W. A. Pryor), New York: Academic Press, 1976, səh. 239-240

Həyatın olması üçün bunlar olmalıdır

heyat-tarazligiYer kürəsini araşdırdığımız vaxt, demək olar ki, bitməyəcəkmiş kimi görünən olduqca uzun “həyat üçün lazımi tarazlıqlar” siyahısını yaza bilərik. Məsələn, Amerikalı astronom Hyu Ros (Hugh Ross), Yerin həyat üçün əlverişliliyi ilə əlaqədar bəzi maddələri belə sadalayır:

Yerin cazibə qüvvəsi:

  • Əgər daha güclü olsaydı: Yer kürəsi atmosferi xeyli ammonyak və metan toplayar, bu da həyat üçün çox əlverişsiz olardı.
  • Yox əgər daha zəif olsaydı: Yer kürəsi atmosferi çox su itirər və həyat mümkün olmazdı.

Günəşə olan məsafə: “Həyatın olması üçün bunlar olmalıdır” yazısını okumaya devam et

Sadə yarpaqların mürəkkəb quruluşu.

XVII əsrdə yaşamış belçikalı fizik  Yan Baptist van Helmont elmi təcrübələrindən birində söyüd ağacının böyüməsini müşahidə edir və müxtəlif ölçmələr aparır. Ağacı əvvəlcə çəkir, 5 il sonra yenidən çəkir və ağırlığının 75 qr artdığını görür. Bitkinin böyüdüyü qabdakı torpağı çəkdikdə isə 5 il ərzində sadəcə bir neçə qram azaldığını görür. Fizik van Helmont bu təcrübəsində söyüd ağacının böyüməsinin səbəbinin sadəcə dibçəkdəki torpaq olmadığını aşkar edir. Bitki böyümək üçün torpağın çox az hissəsindən istifadə etdiyinə görə, deməli, başqa yerdən qida alır.

XVII əsrdə van Helmontun kəşf etməyə çalışdığı bu hadisə bəzi mərhələləri dövrümüzdə belə tam məlum olmayan fotosintez prosesidir. Yəni bitkilər qidalarını özləri hasil edirlər.

Bitkilər qida hasil edərkən təkcə torpaqdan faydalanmırlar. Torpaqdakı minerallarla yanaşı, sudan və havadakı karbon qazından istifadə edirlər. Bu xammalları götürüb yarpaqlardakı mikroskopik fabriklərdə emal edərək fotosintez edirlər.

Yarpaqlar xüsusilə bitkilərin qida hasil etməsi, tənəffüs etməsi kimi proseslər üçün dizayn olunublar. Bir az sonra təfərrüatı ilə görəcəyimiz bu dizayn, əlbəttə, bizə yarpaqları dizayn edən üstün qüvvət sahibi Allah`ın varlığını sübut edən dəlillərdəndir.

 Yarpaqların xüsusi formasının səbəbi

images

 Həm ümumi quruluş cəhətdən, həm də mikroskopik cəhətdən təhlil edildikdə yarpaqların ən çox enerji hasilatını təmin etmək üçün yaradılmış, çox dəqiq, kompleks sistemlərə malik olduğunu görərik. Yarpaq enerji hasil etmək üçün temperatur və karbon qazını xarici mühitdən almalıdır. Yarpağın quruluşu da bu iki maddəni asanlıqla qəbul edəcək şəkildə tənzimlənmişdir.

Əvvəlcə, yarpaqların xarici quruluşunu təhlil edək.

Yarpaqların xarici səthi genişdir. Bu da fotosintez üçün lazım olan qaz mübadiləsinin (karbon qazının qəbul edilməsi və oksigenin xaric edilməsi) asanlıqla həyata keçirilməsini təmin edir.

Yarpağın yastı forması isə bütün hüceyrələrin xarici mühitə yaxın olmasına səbəb olur. Bu sayədə, qaz mübadiləsi asanlaşır və günəş şüaları fotosintez edən hüceyrələrin hamısına çatır. Bunun əksini təsəvvür edək. Yarpaqlar yastı və zərif quruluşda deyil, hər hansı həndəsi və ya mənasız formada olsaydı, yarpaq fotosintez prosesini sadəcə günəşin birbaşa təmas etdiyi hissələrdə həyata keçirərdi. Bu da bitkilərin kifayət qədər enerji və oksigen hasil etməsinə mane olardı. Nəticədə, canlılar enerjidən məhrum olardılar.

Yarpaqlar bitkilərin həm nüvə enerjisi hasil edən stansiyaları, həm qida hasil edən fabrikləri, həm də mühüm reaksiyaları həyata keçirdikləri laboratoriyalarıdır. Yarpaqlarda həyati əhəmiyyət daşıyan proseslərin necə baş verdiyini anlamaq üçün yarpaqların fizioloji quruluşunu da təhlil etmək lazımdır.

Yarpaqların daxili quruluşu

Yarpağı eninə kəsərək təhlil etsək, dörd təbəqəli quruluşla qarşılaşarıq.

biologiya-yarpan-daxili-quruluu-3-638

Bu təbəqələrdən birincisi xloroplast olmayan epidermis təbəqəsidir. Yarpağı altdan və üstdən örtən epidermis təbəqəsinin xüsusiyyəti yarpağı xarici amillərin təsirindən qorumaqdır. Epidermisin üstü qoruyucu, sukeçirməz mumabənzər maddə ilə örtülüdür. Bu maddə kutikula adlanır. Yarpağın daxili toxumasına baxdıqda isə, əsasən, 2 hüceyrə təbəqəsindən ibarət olduğunu görürük. Daxili toxumanı təşkil edən palisad toxumada xloroplastla zəngin olan hüceyrələr aralarında heç boşluq buraxmadan yan-yana düzülürlər. Bu toxuma fotosintezi həyata keçirən toxumadır. Palisad toxumanın altında yerləşən süngər toxuma isə tənəffüsü təmin edir. Süngər toxumadakı hüceyrələr digər hissələrdəki hüceyrələrə nisbətən daha boş şəkildə bir-birinə birləşiblər. Bundan əlavə, bu toxumanın hüceyrələri arasında hava ilə dolu boşluqlar var.

Göründüyü kimi, bu toxumaların hamısı yarpağın quruluşunda mühüm funksiyalar yerinə yetirir. Bu quruluş yarpaqda işığın daha yaxşı paylanmasını təmin edərək fotosintez prosesinin baş verməsi üçün böyük əhəmiyyət daşıyır. Bununla yanaşı, yarpağın səthinin ölçüsünə görə yarpağın funksionallıq (tənəffüs, fotosintez) qabiliyyəti artır. Məsələn, sıx tropik meşələrdə, əsasən, geniş yarpaqlı bitkilər yetişir. Bunun çox mühüm səbəbləri var. Daima çoxlu miqdarda yağış yağan, sıx ağaclardan ibarət tropik meşələrdə günəş işığının bitkilərin hər tərəfinə bərabər çatması çox çətindir. Bu da işığı qəbul etmək üçün yarpaq səthinin geniş olmasını tələb edir. Günəş işığının çətinliklə daxil olduğu sahələrdə bitkilərin qida hasil etməsi üçün yarpaq səthlərinin geniş olması böyük əhəmiyyət daşıyır. Çünki bu xüsusiyyətləri sayəsində tropik bitkilər müxtəlif yerlərdən ən çox faydalanacaqları şəkildə günəş işığı ala bilirlər.

Əksinə, quru, sərt iqlim qurşaqlarında kiçik yarpaqlı bitkilər yetişir. Çünki bu iqlim şəraitində bitkilər temperatur itirməməlidirlər. Yarpaq səthi geniş olduqda su buxarlanması, dolayısilə, temperatur itkisi artır. Bu səbəbdən, işığı qəbul edən yarpaq səthi bitkinin suya qənaət etməsi üçün xüsusi dizayn edilmişdir. Səhra mühitində yarpaq səthi bir az da kiçilir. Məsələn, kaktuslarda yarpaq əvəzinə tikanlar var. Bu bitkilərdə fotosintez ətli gövdədə həyata keçirilir. Gövdə həm də suyun tədarük edildiyi yerdir.

Buraya qədər verilən bir neçə nümunədən də göründüyü kimi, bitkilərdə qüsursuz sistemlər qurulub və bu sistemlər yaradıldıqları andan etibarən heç bir dəyişiklik olmadan dövrümüzə qədər gəlib çatmışdır. Yarpaq tökülməsi, bitkilərin özlərini günəşə doğru çevirməsi, bitkilərin yaşıl rəngi, gövdələrindəki oduncaq quruluş, kökləri, meyvələrin əmələ gəlməsi kimi bütün xüsusiyyətləri bənzərsizdir. Bitkilərdəkindən daha yaxşı sistemlərin əmələ gətirilməsi, hətta yarpaqlarda baş verən proseslərin (məsələn, fotosintez) müasir texnologiya ilə həyata keçirilməsi qeyri-mümkündür.

Bu isə yarpaqların təsadüfən əmələ gəlmədiyini sübut edir. Yarpaqları ən mükəmməl quruluşda yaradan bütün aləmlərin Rəbbi olan Allah`dır:

“Sadə yarpaqların mürəkkəb quruluşu.” yazısını okumaya devam et

İnsan orqanizminin daxilində sağ-sol seçimi edən kirpikli hüceyrələr

kirpikcikli huceyrelerQarşımızda duran bir insana və ya güzgüyə baxdıqda qüsursuz bir simmetriya dərhal diqqətimizi çəkərkən, kirpikli hüceyrələrin daxili orqanlarımızı asimmetrik olaraq yerləşdirməsindəki hikmətlər nələrdir? Ağlı və şüuru olmayan bu hüceyrələr necə olur ki, embrionda hələ beyin belə formalaşmamışkən, sağı və solu ayırd edə və bütün insanlarda orqanların harada yerləşdirilməli olduğunu müəyyən edə bilirlər? Bu proseslər əsnasında kirpikli hüceyrələrin yaratdıqları qabarcıqların funksiyası nədir?

“İnsan orqanizminin daxilində sağ-sol seçimi edən kirpikli hüceyrələr” yazısını okumaya devam et

Ağaclar nə qədər uzana bilir?

Şimali Arizona Universitetindən olan tədqiqatçılar dünyanın ən uzun ağacları üzərində apardıqları tədqiqat nəticəsində ağacların böyüməsini idarə edən faktorları aşkara çıxardılar. (1) (2)

Ağacda açıq-aşkar bir dizayn var. Ağacı meydana gətirən hüceyrələr kök, gövdə, qabıq, su daşıyıcılar, budaqlar və yarpaqları meydana gətirəcək şəkildə mütəşəkkil təşkil olunmuşdur. Hüceyrələr ağacın həyatını davam etdirməsi üçün lazımlı funksiyaları yerinə yetirəcək hissələri meydana gətirir və bu hissələr arasında da müntəzəm uzlaşma həyata keçirilir.

Həmçinin bir ağacı kimyəvi məhsul istehsal edən nəhəng bir fabrikə də bənzətmək olar. Burada çox mürəkkəb kimyəvi proseslər qüsursuz plan daxilində həyata keçirilir. Bu prosesləri həyata keçirən orqanların kompüter kimi hesablamalar apardığına dair dəlillər mövcuddur.

Ağacla bağlı həqiqətlərdən ən təəccüblüsü odur ki, bu cür mütəşəkkillik və sistemlərin məlumatı ağac hələ kiçik bir toxum ikən DNT-sinə yüklənmişdir. Toxum DNT-sinə yüklənmiş təlimatları ardıcıl yerinə yetirərək özünün görünüş və ölçüsünə heç bir bənzərliyi olmayan nəhəng bir ağaca çevrilər. Bir toxumun torpağa düşdükdən və bir az nəmləndikdən sonra kök salıb budaqlanaraq bir ağaca çevrilməsi Allahın qüsursuz yaratdığına açıq-aydın bir göstəricidir.

Bu möcüzəvi canlıda böyümənin müəyyən bir mərhələdən sonra dayanması da Allahın yer üzündə yaratdığı tarazlığın bir hissəsidir. Əgər ağacları meydana gətirən hüceyrələr nəzarətsiz şəkildə dayanmadan böyüsəydilər, yer üzündə həyatın məhv olmasına aparan nəticələr ortaya çıxardı.

Ağacların nə qədər ucalacağını müəyyən edən faktorları tədqiq edən elm adamları dünyanın ən uzun ağacları üzərində maraqlı bir tədqiqat həyata keçirdilər. Yüksəkliyi 100 metri keçən ağacların başına çıxan tədqiqatçılar ölçümə işləri apararaq bu faktorlara dair əlamət axtardılar.

Dünyanın ən hündür ağacı hesab olunan 112.7 metrlik nəhəng sərv ağacı (Sequia semperviens) da daxil olmaqla, ən hündür beş ağac üzərində tədqiqatlar aparılmışdır. Belə hündürlükdəki bir ağacın hündürlüyü 30 mərtəbəli binanın hündürlüyünə bərabərdir.

agac “Ağaclar nə qədər uzana bilir?” yazısını okumaya devam et